
Global Min Cut
CS 456: Project 5

Neil Kollack and Toby Vincent

Global Min Cut
CS 456: Project 5

1 Introduction

The goal of this project was to analyze and compare the Edmonds-Karp algorithm with Karger’s
approximation algorithm for finding the global minimum cut of a graph. The global minimum cut
problem consists of finding the lowest capacity cut through a graph. Being a NP Hard problem,
the runtime of finding the exact solution using the Edmonds–Karp algorithm is O(|V |2|E|2), and
as such, we aim to experiment with Karger’s approximation algorithm to discover its viability, and
what trade-offs are made compared to the Edmonds–Karp algorithm.

2 Results

Graph Exact Cuts Contract1 Cuts Contract2 Cuts Contract3 Cuts Contract4 Cuts Contract5 Cuts

celegansneural.graph 1 1 9 4 1 12
Project4Graph2.txt 10 10 10 10 11 11
Project4Graph1.txt 5 5 5 5 5 11
polbooksWeighted.graph 2 5 3 4 7 4
karateWeighted.graph 1 1 2 2 2 2
florida-bay.graph 2 16 204 13 288 12

Graph Exact (ms) Contract1 (ms) Contract2 (ms) Contract3 (ms) Contract4 (ms) Contract5 (ms)

celegansneural.graph 1750.2084 81.0912 18.408 18.5579 17.5412 17.3655
Project4Graph2.txt 0.0775 0.5155 0.4025 0.4386 0.1804 0.4783
Project4Graph1.txt 0.0502 0.4511 0.4779 0.3802 0.4031 0.4454
polbooksWeighted.graph 102.1129 44.3344 21.2961 21.3725 22.2797 21.3039
karateWeighted.graph 3.1357 20.9576 1.2417 0.6967 0.7071 20.8144
florida-bay.graph 513.2117 25.1122 49.1835 24.0553 24.487 24.4457

Table 1: Minimum cut and associated runtimes for 10 iterations

Graph Exact Cuts Contract1 Cuts Contract2 Cuts Contract3 Cuts Contract4 Cuts Contract5 Cuts

celegansneural.graph 1 1 1 1 1 1
Project4Graph2.txt 10 11 11 10 11 17
Project4Graph1.txt 5 13 11 5 5 5
polbooksWeighted.graph 2 4 2 3 3 2
karateWeighted.graph 1 1 1 1 1 1
florida-bay.graph 2 2 13 2 2 13

Graph Exact (ms) Contract1 (ms) Contract2 (ms) Contract3 (ms) Contract4 (ms) Contract5 (ms)

celegansneural.graph 1750.2084 557.0621 503.0906 399.7002 413.8505 406.6934
Project4Graph2.txt 0.0775 0.3823 0.4282 0.4109 0.1151 0.4346
Project4Graph1.txt 0.0502 0.3987 0.369 0.341 0.3666 0.3754
polbooksWeighted.graph 102.1129 73.3894 54.0188 34.3985 53.5005 32.6633
karateWeighted.graph 3.1357 21.8032 21.3198 43.1202 21.163 0.8361
florida-bay.graph 513.2117 87.747 88.7737 84.243 127.649 88.0672

Table 2: Minimum cut and associated runtimes for n iterations

1

Global Min Cut
CS 456: Project 5

Neil Kollack and Toby Vincent
Graph Exact Cuts Contract1 Cuts Contract2 Cuts Contract3 Cuts Contract4 Cuts Contract5 Cuts

celegansneural.graph 1 1 1 1 1 1
Project4Graph2.txt 10 10 10 10 10 10
Project4Graph1.txt 5 5 5 5 5 5
polbooksWeighted.graph 2 2 2 2 2 2
karateWeighted.graph 1 1 1 1 1 1
florida-bay.graph 2 2 2 2 2 2

Graph Exact (ms) Contract1 (ms) Contract2 (ms) Contract3 (ms) Contract4 (ms) Contract5 (ms)

celegansneural.graph 1750.2084 774759.5932 703439.1859 687873.8018 716489.0127 689531.893
Project4Graph2.txt 0.0775 0.9838 1.9534 0.7784 0.7699 0.3623
Project4Graph1.txt 0.0502 0.6279 0.2741 0.6162 0.3017 0.5493
polbooksWeighted.graph 102.1129 6181.3018 6342.346 6557.8713 6485.526 6532.7274
karateWeighted.graph 3.1357 134.6114 110.5004 129.3092 110.1674 130.8909
florida-bay.graph 513.2117 41388.8641 42039.0769 43972.4187 43956.6237 43784.628

Table 3: Minimum cut and associated runtimes for n2 lnn iterations

3 Analysis

When looking at the probability of not finding the minimum cut we know that when repeating
the contraction algorithm n2ln(n) times that the probability of not finding the minimum cut is
1/n2. However, when running the algorithm only n times there is a rather noticeable change

in the probability. Simplifying the probability equation down from Pn = 1 − [1 −
(
n
2

)−1
]n to

Pn = 1 − [1 − 2
n2−n

]n it becomes apparent that while running the algorithm n times is moving

toward a low probability of not finding the minimum cut, it is nowhere near as effective as n2ln(n)
times. Where running n times the failure rate never really reaches a sufficiently small probability,
whereas n2ln(n) would reach a point of failure that is sufficient on graphs with very small n values.

When also taking into account that we performed 5 repetitions, the probability of failure for
n2ln(n) drops immediately to almost zero, even at n = 2. Where n still has at least a 1% overall
failure rate. This is reflected in our data, where n2ln(n) did not fail on any repetitions and n failed
a majority of the time but at least one of the five repetitions came up with the correct answer.

As for the runtimes, as expected with the Contraction Algorithm being O(|V |2 ∗ |E| ∗ log(V)),
which is at least a factor less than the Edmonds-Karp method, the approximation method is
much faster even when ran n2ln(n) times. Therefore, with the accuracy of the n2ln(n) iteration
Contraction Algorithm matching that of the exact method, and its runtime proving to be better,
this experiment would seem to conclude that the n2ln(n) iteration approximation is the preferable
choice of all options examined

4 Conclusion

Due to the insurmountable runtimes of the algorithm on a larger graph for n2 lnn iterations, it
is unfeasible to run the number of repetitions needed for a dataset large enough to conclusively
show the probability of not finding the minimum cut converges to zero. Even with parallelization
of the main iteration loop the runtime of larger graphs was still excessive. That being said, even
five repetitions of the algorithm illustrates the disparity between the different iteration counts that
where chosen for this experiment. The level of experimentation was a successfully demonstrated
the viability of using Karger’s algorithm as a solution to an otherwise difficult problem.

2

	Introduction
	Results
	Analysis
	Conclusion

