import solid as sl import numpy as np from numpy import pi import os.path as path def deg2rad(degrees: float) -> float: return degrees * pi / 180 def rad2deg(rad: float) -> float: return rad * 180 / pi # ###################### # ## Shape parameters ## # ###################### nrows = 5 # key rows ncols = 6 # key columns alpha = pi / 12.0 # curvature of the columns beta = pi / 36.0 # curvature of the rows centerrow = nrows - 3 # controls front_back tilt centercol = 3 # controls left_right tilt / tenting (higher number is more tenting) tenting_angle = pi / 12.0 # or, change this for more precise tenting control hot_swap = False if nrows > 5: column_style = "orthographic" else: column_style = "standard" # options include :standard, :orthographic, and :fixed # column_style='fixed' def column_offset(column: int) -> list: if column == 2: return [0, 2.82, -4.5] elif column >= 4: return [0, -12, 5.64] # original [0 -5.8 5.64] else: return [0, 0, 0] thumb_offsets = [6, -3, 7] keyboard_z_offset = ( 9 # controls overall height# original=9 with centercol=3# use 16 for centercol=2 ) extra_width = 2.5 # extra space between the base of keys# original= 2 extra_height = 1.0 # original= 0.5 wall_z_offset = -15 # length of the first downward_sloping part of the wall (negative) wall_xy_offset = 5 # offset in the x and/or y direction for the first downward_sloping part of the wall (negative) wall_thickness = 2 # wall thickness parameter# originally 5 ## Settings for column_style == :fixed ## The defaults roughly match Maltron settings ## http://patentimages.storage.googleapis.com/EP0219944A2/imgf0002.png ## fixed_z overrides the z portion of the column ofsets above. ## NOTE: THIS DOESN'T WORK QUITE LIKE I'D HOPED. fixed_angles = [deg2rad(10), deg2rad(10), 0, 0, 0, deg2rad(-15), deg2rad(-15)] fixed_x = [-41.5, -22.5, 0, 20.3, 41.4, 65.5, 89.6] # relative to the middle finger fixed_z = [12.1, 8.3, 0, 5, 10.7, 14.5, 17.5] fixed_tenting = deg2rad(0) ####################### ## General variables ## ####################### lastrow = nrows - 1 cornerrow = lastrow - 1 lastcol = ncols - 1 ################# ## Switch Hole ## ################# keyswitch_height = 14.4 ## Was 14.1, then 14.25 keyswitch_width = 14.4 sa_profile_key_height = 12.7 plate_thickness = 4 mount_width = keyswitch_width + 3 mount_height = keyswitch_height + 3 def single_plate(cylinder_segments=100): top_wall = sl.cube([keyswitch_width + 3, 1.5, plate_thickness], center=True) top_wall = sl.translate( [0, (1.5 / 2) + (keyswitch_height / 2), plate_thickness / 2] )(top_wall) left_wall = sl.cube([1.5, keyswitch_height + 3, plate_thickness], center=True) left_wall = sl.translate( [(1.5 / 2) + (keyswitch_width / 2), 0, plate_thickness / 2] )(left_wall) side_nub = sl.cylinder(1, 2.75, segments=cylinder_segments, center=True) side_nub = sl.rotate(rad2deg(pi / 2), [1, 0, 0])(side_nub) side_nub = sl.translate([keyswitch_width / 2, 0, 1])(side_nub) nub_cube = sl.cube([1.5, 2.75, plate_thickness], center=True) nub_cube = sl.translate( [(1.5 / 2) + (keyswitch_width / 2), 0, plate_thickness / 2] )(nub_cube) side_nub = sl.hull()(side_nub, nub_cube) plate_half1 = top_wall + left_wall + side_nub plate_half2 = plate_half1 plate_half2 = sl.mirror([0, 1, 0])(plate_half2) plate_half2 = sl.mirror([1, 0, 0])(plate_half2) plate = plate_half1 + plate_half2 if hot_swap: hot_swap_socket = sl.import_( path.join(r"..", "geometry", r"hot_swap_plate.stl") ) hot_swap_socket = sl.translate([0, 0, plate_thickness - 5.25])(hot_swap_socket) plate = sl.union()(plate, hot_swap_socket) return plate ################ ## SA Keycaps ## ################ sa_length = 18.25 sa_double_length = 37.5 def sa_cap(Usize=1): # MODIFIED TO NOT HAVE THE ROTATION. NEEDS ROTATION DURING ASSEMBLY sa_length = 18.25 bw2 = Usize * sa_length / 2 bl2 = sa_length / 2 m = 0 pw2 = 6 * Usize + 1 pl2 = 6 if Usize == 1: m = 17 / 2 k1 = sl.polygon([[bw2, bl2], [bw2, -bl2], [-bw2, -bl2], [-bw2, bl2]]) k1 = sl.linear_extrude(height=0.1, twist=0, convexity=0, center=True)(k1) k1 = sl.translate([0, 0, 0.05])(k1) k2 = sl.polygon([[pw2, pl2], [pw2, -pl2], [-pw2, -pl2], [-pw2, pl2]]) k2 = sl.linear_extrude(height=0.1, twist=0, convexity=0, center=True)(k2) k2 = sl.translate([0, 0, 12.0])(k2) if m > 0: m1 = sl.polygon([[m, m], [m, -m], [-m, -m], [-m, m]]) m1 = sl.linear_extrude(height=0.1, twist=0, convexity=0, center=True)(m1) m1 = sl.translate([0, 0, 6.0])(m1) key_cap = sl.hull()(k1, k2, m1) else: key_cap = sl.hull()(k1, k2) key_cap = sl.translate([0, 0, 5 + plate_thickness])(key_cap) key_cap = sl.color([220 / 255, 163 / 255, 163 / 255, 1])(key_cap) return key_cap ######################### ## Placement Functions ## ######################### def rotate_around_x(position, angle): # print((position, angle)) t_matrix = np.array( [ [1, 0, 0], [0, np.cos(angle), -np.sin(angle)], [0, np.sin(angle), np.cos(angle)], ] ) return np.matmul(t_matrix, position) def rotate_around_y(position, angle): # print((position, angle)) t_matrix = np.array( [ [np.cos(angle), 0, np.sin(angle)], [0, 1, 0], [-np.sin(angle), 0, np.cos(angle)], ] ) return np.matmul(t_matrix, position) cap_top_height = plate_thickness + sa_profile_key_height row_radius = ((mount_height + extra_height) / 2) / (np.sin(alpha / 2)) + cap_top_height column_radius = ( ((mount_width + extra_width) / 2) / (np.sin(beta / 2)) ) + cap_top_height column_x_delta = -1 - column_radius * np.sin(beta) column_base_angle = beta * (centercol - 2) def apply_key_geometry( shape, translate_fn, rotate_x_fn, rotate_y_fn, column, row, column_style=column_style, ): column_angle = beta * (centercol - column) if column_style == "orthographic": column_z_delta = column_radius * (1 - np.cos(column_angle)) shape = translate_fn(shape, [0, 0, -row_radius]) shape = rotate_x_fn(shape, alpha * (centerrow - row)) shape = translate_fn(shape, [0, 0, row_radius]) shape = rotate_y_fn(shape, column_angle) shape = translate_fn( shape, [-(column - centercol) * column_x_delta, 0, column_z_delta] ) shape = translate_fn(shape, column_offset(column)) elif column_style == "fixed": shape = rotate_y_fn(shape, fixed_angles[column]) shape = translate_fn(shape, [fixed_x[column], 0, fixed_z[column]]) shape = translate_fn(shape, [0, 0, -(row_radius + fixed_z[column])]) shape = rotate_x_fn(shape, alpha * (centerrow - row)) shape = translate_fn(shape, [0, 0, row_radius + fixed_z[column]]) shape = rotate_y_fn(shape, fixed_tenting) shape = translate_fn(shape, [0, column_offset(column)[1], 0]) else: shape = translate_fn(shape, [0, 0, -row_radius]) shape = rotate_x_fn(shape, alpha * (centerrow - row)) shape = translate_fn(shape, [0, 0, row_radius]) shape = translate_fn(shape, [0, 0, -column_radius]) shape = rotate_y_fn(shape, column_angle) shape = translate_fn(shape, [0, 0, column_radius]) shape = translate_fn(shape, column_offset(column)) shape = rotate_y_fn(shape, tenting_angle) shape = translate_fn(shape, [0, 0, keyboard_z_offset]) return shape def translate(shape, xyz): return sl.translate(xyz)(shape) def x_rot(shape, angle): return sl.rotate(rad2deg(angle), [1, 0, 0])(shape) def y_rot(shape, angle): return sl.rotate(rad2deg(angle), [0, 1, 0])(shape) def key_place(shape, column, row): return apply_key_geometry(shape, translate, x_rot, y_rot, column, row) def add_translate(shape, xyz): vals = [] for i in range(len(shape)): vals.append(shape[i] + xyz[i]) return vals def key_position(position, column, row): return apply_key_geometry( position, add_translate, rotate_around_x, rotate_around_y, column, row ) def key_holes(): hole = single_plate() holes = [] for column in range(ncols): for row in range(nrows): if (column in [2, 3]) or (not row == lastrow): holes.append(key_place(hole, column, row)) return sl.union()(*holes) def caps(): caps = [] for column in range(ncols): for row in range(nrows): if (column in [2, 3]) or (not row == lastrow): caps.append(key_place(sa_cap(), column, row)) return sl.union()(*caps) #################### ## Web Connectors ## #################### web_thickness = 3.5 post_size = 0.1 def web_post(): post = sl.cube([post_size, post_size, web_thickness], center=True) post = sl.translate([0, 0, plate_thickness - (web_thickness / 2)])(post) return post post_adj = post_size / 2 def web_post_tr(): return sl.translate( [(mount_width / 2) - post_adj, (mount_height / 2) - post_adj, 0] )(web_post()) def web_post_tl(): return sl.translate( [-(mount_width / 2) + post_adj, (mount_height / 2) - post_adj, 0] )(web_post()) def web_post_bl(): return sl.translate( [-(mount_width / 2) + post_adj, -(mount_height / 2) + post_adj, 0] )(web_post()) def web_post_br(): return sl.translate( [(mount_width / 2) - post_adj, -(mount_height / 2) + post_adj, 0] )(web_post()) def triangle_hulls(shapes): hulls = [] for i in range(len(shapes) - 2): hulls.append(sl.hull()(*shapes[i : (i + 3)])) return sl.union()(*hulls) def connectors(): hulls = [] for column in range(ncols - 1): for row in range(lastrow): # need to consider last_row? # for row in range(nrows): # need to consider last_row? places = [] places.append(key_place(web_post_tl(), column + 1, row)) places.append(key_place(web_post_tr(), column, row)) places.append(key_place(web_post_bl(), column + 1, row)) places.append(key_place(web_post_br(), column, row)) hulls.append(triangle_hulls(places)) for column in range(ncols): # for row in range(nrows-1): for row in range(cornerrow): places = [] places.append(key_place(web_post_bl(), column, row)) places.append(key_place(web_post_br(), column, row)) places.append(key_place(web_post_tl(), column, row + 1)) places.append(key_place(web_post_tr(), column, row + 1)) hulls.append(triangle_hulls(places)) for column in range(ncols - 1): # for row in range(nrows-1): # need to consider last_row? for row in range(cornerrow): # need to consider last_row? places = [] places.append(key_place(web_post_br(), column, row)) places.append(key_place(web_post_tr(), column, row + 1)) places.append(key_place(web_post_bl(), column + 1, row)) places.append(key_place(web_post_tl(), column + 1, row + 1)) hulls.append(triangle_hulls(places)) return sl.union()(*hulls) ############ ## Thumbs ## ############ def thumborigin(): origin = key_position([mount_width / 2, -(mount_height / 2), 0], 1, cornerrow) for i in range(len(origin)): origin[i] = origin[i] + thumb_offsets[i] return origin def thumb_tr_place(shape): shape = sl.rotate(10, [1, 0, 0])(shape) shape = sl.rotate(-23, [0, 1, 0])(shape) shape = sl.rotate(10, [0, 0, 1])(shape) shape = sl.translate(thumborigin())(shape) shape = sl.translate([-12, -16, 3])(shape) return shape def thumb_tl_place(shape): shape = sl.rotate(10, [1, 0, 0])(shape) shape = sl.rotate(-23, [0, 1, 0])(shape) shape = sl.rotate(10, [0, 0, 1])(shape) shape = sl.translate(thumborigin())(shape) shape = sl.translate([-32, -15, -2])(shape) return shape def thumb_mr_place(shape): shape = sl.rotate(-6, [1, 0, 0])(shape) shape = sl.rotate(-34, [0, 1, 0])(shape) shape = sl.rotate(48, [0, 0, 1])(shape) shape = sl.translate(thumborigin())(shape) shape = sl.translate([-29, -40, -13])(shape) return shape def thumb_ml_place(shape): shape = sl.rotate(6, [1, 0, 0])(shape) shape = sl.rotate(-34, [0, 1, 0])(shape) shape = sl.rotate(40, [0, 0, 1])(shape) shape = sl.translate(thumborigin())(shape) shape = sl.translate([-51, -25, -12])(shape) return shape def thumb_br_place(shape): shape = sl.rotate(-16, [1, 0, 0])(shape) shape = sl.rotate(-33, [0, 1, 0])(shape) shape = sl.rotate(54, [0, 0, 1])(shape) shape = sl.translate(thumborigin())(shape) shape = sl.translate([-37.8, -55.3, -25.3])(shape) return shape def thumb_bl_place(shape): shape = sl.rotate(-4, [1, 0, 0])(shape) shape = sl.rotate(-35, [0, 1, 0])(shape) shape = sl.rotate(52, [0, 0, 1])(shape) shape = sl.translate(thumborigin())(shape) shape = sl.translate([-56.3, -43.3, -23.5])(shape) return shape def thumb_1x_layout(shape): return sl.union()( thumb_mr_place(shape), thumb_ml_place(shape), thumb_br_place(shape), thumb_bl_place(shape), ) def thumb_15x_layout(shape): return sl.union()(thumb_tr_place(shape), thumb_tl_place(shape),) def double_plate(): plate_height = (sa_double_length - mount_height) / 3 # plate_height = (2*sa_length-mount_height) / 3 top_plate = sl.cube([mount_width, plate_height, web_thickness], center=True) top_plate = sl.translate( [0, (plate_height + mount_height) / 2, plate_thickness - (web_thickness / 2)] )(top_plate) return sl.union()(top_plate, sl.mirror([0, 1, 0])(top_plate)) def thumbcaps(): t1 = thumb_1x_layout(sa_cap(1)) t15 = thumb_15x_layout(sl.rotate(pi / 2, [0, 0, 1])(sa_cap(1.5))) return t1 + t15 def thumb(): shape = thumb_1x_layout(single_plate()) shape += thumb_15x_layout(single_plate()) shape += thumb_15x_layout(double_plate()) return shape def thumb_post_tr(): return sl.translate( [(mount_width / 2) - post_adj, (mount_height / 1.15) - post_adj, 0] )(web_post()) def thumb_post_tl(): return sl.translate( [-(mount_width / 2) + post_adj, (mount_height / 1.15) - post_adj, 0] )(web_post()) def thumb_post_bl(): return sl.translate( [-(mount_width / 2) + post_adj, -(mount_height / 1.15) + post_adj, 0] )(web_post()) def thumb_post_br(): return sl.translate( [(mount_width / 2) - post_adj, -(mount_height / 1.15) + post_adj, 0] )(web_post()) def thumb_connectors(): hulls = [] # Top two hulls.append( triangle_hulls( [ thumb_tl_place(thumb_post_tr()), thumb_tl_place(thumb_post_br()), thumb_tr_place(thumb_post_tl()), thumb_tr_place(thumb_post_bl()), ] ) ) # bottom two on the right hulls.append( triangle_hulls( [ thumb_br_place(web_post_tr()), thumb_br_place(web_post_br()), thumb_mr_place(web_post_tl()), thumb_mr_place(web_post_bl()), ] ) ) # bottom two on the left hulls.append( triangle_hulls( [ thumb_br_place(web_post_tr()), thumb_br_place(web_post_br()), thumb_mr_place(web_post_tl()), thumb_mr_place(web_post_bl()), ] ) ) # centers of the bottom four hulls.append( triangle_hulls( [ thumb_bl_place(web_post_tr()), thumb_bl_place(web_post_br()), thumb_ml_place(web_post_tl()), thumb_ml_place(web_post_bl()), ] ) ) # top two to the middle two, starting on the left hulls.append( triangle_hulls( [ thumb_br_place(web_post_tl()), thumb_bl_place(web_post_bl()), thumb_br_place(web_post_tr()), thumb_bl_place(web_post_br()), thumb_mr_place(web_post_tl()), thumb_ml_place(web_post_bl()), thumb_mr_place(web_post_tr()), thumb_ml_place(web_post_br()), ] ) ) # top two to the main keyboard, starting on the left hulls.append( triangle_hulls( [ thumb_tl_place(thumb_post_tl()), thumb_ml_place(web_post_tr()), thumb_tl_place(thumb_post_bl()), thumb_ml_place(web_post_br()), thumb_tl_place(thumb_post_br()), thumb_mr_place(web_post_tr()), thumb_tr_place(thumb_post_bl()), thumb_mr_place(web_post_br()), thumb_tr_place(thumb_post_br()), ] ) ) hulls.append( triangle_hulls( [ thumb_tl_place(thumb_post_tl()), key_place(web_post_bl(), 0, cornerrow), thumb_tl_place(thumb_post_tr()), key_place(web_post_br(), 0, cornerrow), thumb_tr_place(thumb_post_tl()), key_place(web_post_bl(), 1, cornerrow), thumb_tr_place(thumb_post_tr()), key_place(web_post_br(), 1, cornerrow), key_place(web_post_tl(), 2, lastrow), key_place(web_post_bl(), 2, lastrow), thumb_tr_place(thumb_post_tr()), key_place(web_post_bl(), 2, lastrow), thumb_tr_place(thumb_post_br()), key_place(web_post_br(), 2, lastrow), key_place(web_post_bl(), 3, lastrow), key_place(web_post_tr(), 2, lastrow), key_place(web_post_tl(), 3, lastrow), key_place(web_post_bl(), 3, cornerrow), key_place(web_post_tr(), 3, lastrow), key_place(web_post_br(), 3, cornerrow), key_place(web_post_bl(), 4, cornerrow), ] ) ) hulls.append( triangle_hulls( [ key_place(web_post_br(), 1, cornerrow), key_place(web_post_tl(), 2, lastrow), key_place(web_post_bl(), 2, cornerrow), key_place(web_post_tr(), 2, lastrow), key_place(web_post_br(), 2, cornerrow), key_place(web_post_bl(), 3, cornerrow), ] ) ) hulls.append( triangle_hulls( [ key_place(web_post_tr(), 3, lastrow), key_place(web_post_br(), 3, lastrow), key_place(web_post_tr(), 3, lastrow), key_place(web_post_bl(), 4, cornerrow), ] ) ) return sl.union()(*hulls) ########## ## Case ## ########## def bottom_hull(p, height=0.001): shape = None for item in p: proj = sl.projection()(p) t_shape = sl.linear_extrude(height=height, twist=0, convexity=0, center=True)( proj ) t_shape = sl.translate([0, 0, height / 2 - 10])(t_shape) if shape is None: shape = t_shape shape = sl.hull()(p, shape, t_shape) return shape left_wall_x_offset = 10 left_wall_z_offset = 3 def left_key_position(row, direction): pos = np.array( key_position([-mount_width * 0.5, direction * mount_height * 0.5, 0], 0, row) ) return list(pos - np.array([left_wall_x_offset, 0, left_wall_z_offset])) def left_key_place(shape, row, direction): pos = left_key_position(row, direction) return sl.translate(pos)(shape) def wall_locate1(dx, dy): return [dx * wall_thickness, dy * wall_thickness, -1] def wall_locate2(dx, dy): return [dx * wall_xy_offset, dy * wall_xy_offset, wall_z_offset] def wall_locate3(dx, dy): return [ dx * (wall_xy_offset + wall_thickness), dy * (wall_xy_offset + wall_thickness), wall_z_offset, ] def wall_brace(place1, dx1, dy1, post1, place2, dx2, dy2, post2): hulls = [] hulls.append(place1(post1)) hulls.append(place1(sl.translate(wall_locate1(dx1, dy1))(post1))) hulls.append(place1(sl.translate(wall_locate2(dx1, dy1))(post1))) hulls.append(place1(sl.translate(wall_locate3(dx1, dy1))(post1))) hulls.append(place2(post2)) hulls.append(place2(sl.translate(wall_locate1(dx2, dy2))(post2))) hulls.append(place2(sl.translate(wall_locate2(dx2, dy2))(post2))) hulls.append(place2(sl.translate(wall_locate3(dx2, dy2))(post2))) shape1 = sl.hull()(*hulls) hulls = [] hulls.append(place1(sl.translate(wall_locate2(dx1, dy1))(post1))) hulls.append(place1(sl.translate(wall_locate3(dx1, dy1))(post1))) hulls.append(place2(sl.translate(wall_locate2(dx2, dy2))(post2))) hulls.append(place2(sl.translate(wall_locate3(dx2, dy2))(post2))) shape2 = bottom_hull(hulls) return shape1 + shape2 def key_wall_brace(x1, y1, dx1, dy1, post1, x2, y2, dx2, dy2, post2): return wall_brace( (lambda shape: key_place(shape, x1, y1)), dx1, dy1, post1, (lambda shape: key_place(shape, x2, y2)), dx2, dy2, post2, ) def back_wall(): x = 0 shape = key_wall_brace(x, 0, 0, 1, web_post_tl(), x, 0, 0, 1, web_post_tr()) for i in range(ncols - 1): x = i + 1 shape += key_wall_brace(x, 0, 0, 1, web_post_tl(), x, 0, 0, 1, web_post_tr()) shape += key_wall_brace( x, 0, 0, 1, web_post_tl(), x - 1, 0, 0, 1, web_post_tr() ) shape += key_wall_brace( lastcol, 0, 0, 1, web_post_tr(), lastcol, 0, 1, 0, web_post_tr() ) return shape def right_wall(): y = 0 shape = key_wall_brace( lastcol, y, 1, 0, web_post_tr(), lastcol, y, 1, 0, web_post_br() ) for i in range(lastrow - 1): y = i + 1 shape += key_wall_brace( lastcol, y, 1, 0, web_post_tr(), lastcol, y, 1, 0, web_post_br() ) shape += key_wall_brace( lastcol, y, 1, 0, web_post_br(), lastcol, y - 1, 1, 0, web_post_tr() ) shape += key_wall_brace( lastcol, cornerrow, 0, -1, web_post_br(), lastcol, cornerrow, 1, 0, web_post_br(), ) return shape def left_wall(): shape = wall_brace( (lambda sh: key_place(sh, 0, 0)), 0, 1, web_post_tl(), (lambda sh: left_key_place(sh, 0, 1)), 0, 1, web_post(), ) shape += wall_brace( (lambda sh: left_key_place(sh, 0, 1)), 0, 1, web_post(), (lambda sh: left_key_place(sh, 0, 1)), -1, 0, web_post(), ) for i in range(lastrow): y = i temp_shape1 = wall_brace( (lambda sh: left_key_place(sh, y, 1)), -1, 0, web_post(), (lambda sh: left_key_place(sh, y, -1)), -1, 0, web_post(), ) temp_shape2 = sl.hull()( key_place(web_post_tl(), 0, y), key_place(web_post_bl(), 0, y), left_key_place(web_post(), y, 1), left_key_place(web_post(), y, -1), ) shape += temp_shape1 + temp_shape2 for i in range(lastrow - 1): y = i + 1 temp_shape1 = wall_brace( (lambda sh: left_key_place(sh, y - 1, -1)), -1, 0, web_post(), (lambda sh: left_key_place(sh, y, 1)), -1, 0, web_post(), ) temp_shape2 = sl.hull()( key_place(web_post_tl(), 0, y), key_place(web_post_bl(), 0, y - 1), left_key_place(web_post(), y, 1), left_key_place(web_post(), y - 1, -1), ) shape += temp_shape1 + temp_shape2 return shape def front_wall(): shape = key_wall_brace( lastcol, 0, 0, 1, web_post_tr(), lastcol, 0, 1, 0, web_post_tr() ) shape += key_wall_brace( 3, lastrow, 0, -1, web_post_bl(), 3, lastrow, 0.5, -1, web_post_br() ) shape += key_wall_brace( 3, lastrow, 0.5, -1, web_post_br(), 4, cornerrow, 1, -1, web_post_bl() ) for i in range(ncols - 4): x = i + 4 shape += key_wall_brace( x, cornerrow, 0, -1, web_post_bl(), x, cornerrow, 0, -1, web_post_br() ) for i in range(ncols - 5): x = i + 5 shape += key_wall_brace( x, cornerrow, 0, -1, web_post_bl(), x - 1, cornerrow, 0, -1, web_post_br() ) return shape def thumb_walls(): # thumb, walls shape = wall_brace( thumb_mr_place, 0, -1, web_post_br(), thumb_tr_place, 0, -1, thumb_post_br() ) shape += wall_brace( thumb_mr_place, 0, -1, web_post_br(), thumb_mr_place, 0, -1, web_post_bl() ) shape += wall_brace( thumb_br_place, 0, -1, web_post_br(), thumb_br_place, 0, -1, web_post_bl() ) shape += wall_brace( thumb_ml_place, -0.3, 1, web_post_tr(), thumb_ml_place, 0, 1, web_post_tl() ) shape += wall_brace( thumb_bl_place, 0, 1, web_post_tr(), thumb_bl_place, 0, 1, web_post_tl() ) shape += wall_brace( thumb_br_place, -1, 0, web_post_tl(), thumb_br_place, -1, 0, web_post_bl() ) shape += wall_brace( thumb_bl_place, -1, 0, web_post_tl(), thumb_bl_place, -1, 0, web_post_bl() ) # thumb, corners shape += wall_brace( thumb_br_place, -1, 0, web_post_bl(), thumb_br_place, 0, -1, web_post_bl() ) shape += wall_brace( thumb_bl_place, -1, 0, web_post_tl(), thumb_bl_place, 0, 1, web_post_tl() ) # thumb, tweeners shape += wall_brace( thumb_mr_place, 0, -1, web_post_bl(), thumb_br_place, 0, -1, web_post_br() ) shape += wall_brace( thumb_ml_place, 0, 1, web_post_tl(), thumb_bl_place, 0, 1, web_post_tr() ) shape += wall_brace( thumb_bl_place, -1, 0, web_post_bl(), thumb_br_place, -1, 0, web_post_tl() ) shape += wall_brace( thumb_tr_place, 0, -1, thumb_post_br(), (lambda sh: key_place(sh, 3, lastrow)), 0, -1, web_post_bl(), ) return shape def thumb_connection(): # clunky bit on the top left thumb connection (normal connectors don't work well) shape = bottom_hull( [ left_key_place( sl.translate(wall_locate2(-1, 0))(web_post()), cornerrow, -1 ), left_key_place( sl.translate(wall_locate3(-1, 0))(web_post()), cornerrow, -1 ), thumb_ml_place(sl.translate(wall_locate2(-0.3, 1))(web_post_tr())), thumb_ml_place(sl.translate(wall_locate3(-0.3, 1))(web_post_tr())), ] ) shape += sl.hull()( [ left_key_place( sl.translate(wall_locate2(-1, 0))(web_post()), cornerrow, -1 ), left_key_place( sl.translate(wall_locate3(-1, 0))(web_post()), cornerrow, -1 ), thumb_ml_place(sl.translate(wall_locate2(-0.3, 1))(web_post_tr())), thumb_ml_place(sl.translate(wall_locate3(-0.3, 1))(web_post_tr())), thumb_tl_place(thumb_post_tl()), ] ) shape += sl.hull()( [ left_key_place(web_post(), cornerrow, -1), left_key_place( sl.translate(wall_locate1(-1, 0))(web_post()), cornerrow, -1 ), left_key_place( sl.translate(wall_locate2(-1, 0))(web_post()), cornerrow, -1 ), left_key_place( sl.translate(wall_locate3(-1, 0))(web_post()), cornerrow, -1 ), thumb_tl_place(thumb_post_tl()), ] ) shape += sl.hull()( [ left_key_place(web_post(), cornerrow, -1), left_key_place( sl.translate(wall_locate1(-1, 0))(web_post()), cornerrow, -1 ), key_place(web_post_bl(), 0, cornerrow), key_place(sl.translate(wall_locate1(-1, 0))(web_post_bl()), 0, cornerrow), thumb_tl_place(thumb_post_tl()), ] ) shape += sl.hull()( [ thumb_ml_place(web_post_tr()), thumb_ml_place(sl.translate(wall_locate1(-0.3, 1))(web_post_tr())), thumb_ml_place(sl.translate(wall_locate2(-0.3, 1))(web_post_tr())), thumb_ml_place(sl.translate(wall_locate3(-0.3, 1))(web_post_tr())), thumb_tl_place(thumb_post_tl()), ] ) return shape def case_walls(): return ( back_wall() + left_wall() + right_wall() + front_wall() + thumb_walls() + thumb_connection() ) rj9_start = list( np.array([0, -3, 0]) + np.array( key_position( list(np.array(wall_locate3(0, 1)) + np.array([0, (mount_height / 2), 0])), 0, 0, ) ) ) rj9_position = [rj9_start[0], rj9_start[1], 11] def rj9_cube(): return sl.cube([14.78, 13, 22.38], center=True) def rj9_space(): return sl.translate(rj9_position)(rj9_cube()) def rj9_holder(): shape = sl.union()( sl.translate([0, 2, 0])(sl.cube([10.78, 9, 18.38], center=True)), sl.translate([0, 0, 5])(sl.cube([10.78, 13, 5], center=True)), ) shape = sl.difference()(shape, rj9_cube()) shape = sl.translate(rj9_position)(shape) return shape usb_holder_position = key_position( list(np.array(wall_locate2(0, 1)) + np.array([0, (mount_height / 2), 0])), 1, 0 ) usb_holder_size = [6.5, 10.0, 13.6] usb_holder_thickness = 4 def usb_holder(): shape = sl.cube( [ usb_holder_size[0] + usb_holder_thickness, usb_holder_size[1], usb_holder_size[2] + usb_holder_thickness, ], center=True, ) shape = sl.translate( [ usb_holder_position[0], usb_holder_position[1], (usb_holder_size[2] + usb_holder_thickness) / 2, ] )(shape) return shape def usb_holder_hole(): shape = sl.cube(usb_holder_size, center=True) shape = sl.translate( [ usb_holder_position[0], usb_holder_position[1], (usb_holder_size[2] + usb_holder_thickness) / 2, ] )(shape) return shape teensy_width = 20 teensy_height = 12 teensy_length = 33 teensy2_length = 53 teensy_pcb_thickness = 2 teensy_holder_width = 7 + teensy_pcb_thickness teensy_holder_height = 6 + teensy_width teensy_offset_height = 5 teensy_holder_top_length = 18 teensy_top_xy = key_position(wall_locate3(-1, 0), 0, centerrow - 1) teensy_bot_xy = key_position(wall_locate3(-1, 0), 0, centerrow + 1) teensy_holder_length = teensy_top_xy[1] - teensy_bot_xy[1] teensy_holder_offset = -teensy_holder_length / 2 teensy_holder_top_offset = (teensy_holder_top_length / 2) - teensy_holder_length def teensy_holder(): s1 = sl.cube([3, teensy_holder_length, 6 + teensy_width], center=True) s1 = sl.translate([1.5, teensy_holder_offset, 0])(s1) s2 = sl.cube([teensy_pcb_thickness, teensy_holder_length, 3], center=True) s2 = sl.translate( [ (teensy_pcb_thickness / 2) + 3, teensy_holder_offset, -1.5 - (teensy_width / 2), ] )(s2) s3 = sl.cube([teensy_pcb_thickness, teensy_holder_top_length, 3], center=True) s3 = sl.translate( [ (teensy_pcb_thickness / 2) + 3, teensy_holder_top_offset, 1.5 + (teensy_width / 2), ] )(s3) s4 = sl.cube([4, teensy_holder_top_length, 4], center=True) s4 = sl.translate( [teensy_pcb_thickness + 5, teensy_holder_top_offset, 1 + (teensy_width / 2)] )(s4) shape = sl.union()(s1, s2, s3, s4) shape = sl.translate([-teensy_holder_width, 0, 0])(shape) shape = sl.translate([-1.4, 0, 0])(shape) shape = sl.translate( [teensy_top_xy[0], teensy_top_xy[1] - 1, (6 + teensy_width) / 2] )(shape) return shape def screw_insert_shape(bottom_radius, top_radius, height): shape = sl.union()( sl.cylinder(r1=bottom_radius, r2=top_radius, h=height, center=True), sl.translate([0, 0, (height / 2)])(sl.sphere(top_radius)), ) return shape def screw_insert(column, row, bottom_radius, top_radius, height): shift_right = column == lastcol shift_left = column == 0 shift_up = (not (shift_right or shift_left)) and (row == 0) shift_down = (not (shift_right or shift_left)) and (row >= lastrow) if shift_up: position = key_position( list(np.array(wall_locate2(0, 1)) + np.array([0, (mount_height / 2), 0])), column, row, ) elif shift_down: position = key_position( list(np.array(wall_locate2(0, -1)) - np.array([0, (mount_height / 2), 0])), column, row, ) elif shift_left: position = list( np.array(left_key_position(row, 0)) + np.array(wall_locate3(-1, 0)) ) else: position = key_position( list(np.array(wall_locate2(1, 0)) + np.array([(mount_height / 2), 0, 0])), column, row, ) shape = screw_insert_shape(bottom_radius, top_radius, height) shape = sl.translate([position[0], position[1], height / 2])(shape) return shape def screw_insert_all_shapes(bottom_radius, top_radius, height): shape = sl.union()( screw_insert(0, 0, bottom_radius, top_radius, height), screw_insert(0, lastrow, bottom_radius, top_radius, height), screw_insert(2, lastrow + 0.3, bottom_radius, top_radius, height), screw_insert(3, 0, bottom_radius, top_radius, height), screw_insert(lastcol, 1, bottom_radius, top_radius, height), ) return shape screw_insert_height = 3.8 screw_insert_bottom_radius = 5.31 / 2 screw_insert_top_radius = 5.1 / 2 screw_insert_holes = screw_insert_all_shapes( screw_insert_bottom_radius, screw_insert_top_radius, screw_insert_height ) screw_insert_outers = screw_insert_all_shapes( screw_insert_bottom_radius + 1.6, screw_insert_top_radius + 1.6, screw_insert_height + 1.5, ) screw_insert_screw_holes = screw_insert_all_shapes(1.7, 1.7, 350) wire_post_height = 7 wire_post_overhang = 3.5 wire_post_diameter = 2.6 def wire_post(direction, offset): s1 = sl.cube( [wire_post_diameter, wire_post_diameter, wire_post_height], center=True ) s1 = sl.translate([0, -wire_post_diameter * 0.5 * direction, 0])(s1) s2 = sl.cube( [wire_post_diameter, wire_post_overhang, wire_post_diameter], center=True ) s2 = sl.translate( [0, -wire_post_overhang * 0.5 * direction, -wire_post_height / 2] )(s2) shape = sl.union()(s1, s2) shape = sl.translate([0, -offset, (-wire_post_height / 2) + 3])(shape) shape = sl.rotate(-alpha / 2, [1, 0, 0])(shape) shape = sl.translate([3, -mount_height / 2, 0])(shape) return shape def wire_posts(): shape = thumb_ml_place(sl.translate([-5, 0, -2])(wire_post(1, 0))) shape += thumb_ml_place(sl.translate([0, 0, -2.5])(wire_post(-1, 6))) shape += thumb_ml_place(sl.translate([5, 0, -2])(wire_post(1, 0))) for column in range(lastcol): for row in range(lastrow - 1): shape += sl.union()( key_place(sl.translate([-5, 0, 0])(wire_post(1, 0)), column, row), key_place(sl.translate([0, 0, 0])(wire_post(-1, 6)), column, row), key_place(sl.translate([5, 0, 0])(wire_post(1, 0)), column, row), ) return shape def model_right(): shape = sl.union()(key_holes(), connectors(), thumb(), thumb_connectors(),) s2 = sl.union()(case_walls(), screw_insert_outers(), teensy_holder(), usb_holder(),) s2 = sl.difference()(s2, rj9_space(), usb_holder_hole(), screw_insert_holes()) shape = sl.union()(shape, s2, rj9_holder(), wire_posts(),) shape -= sl.translate([0, 0, -20])(sl.cube([350, 350, 40], center=True)) return shape sl.scad_render_to_file(model_right(), path.join(r"..", "things", r"right_py.scad")) sl.scad_render_to_file( sl.mirror([-1, 0, 0])(model_right()), path.join(r"..", "things", r"left_py.scad") ) def baseplate(): shape = sl.union()( case_walls(), teensy_holder(), # rj9_holder(), screw_insert_outers(), ) tool = sl.translate([0, 0, -10])(screw_insert_screw_holes()) shape = shape - tool shape = sl.translate([0, 0, -0.1])(shape) return sl.projection(cut=True)(shape) sl.scad_render_to_file(baseplate(), path.join(r"..", "things", r"plate_py.scad"))