summaryrefslogtreecommitdiffstats
path: root/eightpuzzle.py
blob: 6aa376ce720ac04a64109d21e056bbc83b81dca3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# eightpuzzle.py
# --------------
# Licensing Information:  You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
# 
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).


import search
import random

# Module Classes

class EightPuzzleState:
    """
    The Eight Puzzle is described in the course textbook on
    page 64.

    This class defines the mechanics of the puzzle itself.  The
    task of recasting this puzzle as a search problem is left to
    the EightPuzzleSearchProblem class.
    """

    def __init__( self, numbers ):
        """
          Constructs a new eight puzzle from an ordering of numbers.

        numbers: a list of integers from 0 to 8 representing an
          instance of the eight puzzle.  0 represents the blank
          space.  Thus, the list

            [1, 0, 2, 3, 4, 5, 6, 7, 8]

          represents the eight puzzle:
            -------------
            | 1 |   | 2 |
            -------------
            | 3 | 4 | 5 |
            -------------
            | 6 | 7 | 8 |
            ------------

        The configuration of the puzzle is stored in a 2-dimensional
        list (a list of lists) 'cells'.
        """
        self.cells = []
        numbers = numbers[:] # Make a copy so as not to cause side-effects.
        numbers.reverse()
        for row in range( 3 ):
            self.cells.append( [] )
            for col in range( 3 ):
                self.cells[row].append( numbers.pop() )
                if self.cells[row][col] == 0:
                    self.blankLocation = row, col

    def isGoal( self ):
        """
          Checks to see if the puzzle is in its goal state.

            -------------
            |   | 1 | 2 |
            -------------
            | 3 | 4 | 5 |
            -------------
            | 6 | 7 | 8 |
            -------------

        >>> EightPuzzleState([0, 1, 2, 3, 4, 5, 6, 7, 8]).isGoal()
        True

        >>> EightPuzzleState([1, 0, 2, 3, 4, 5, 6, 7, 8]).isGoal()
        False
        """
        current = 0
        for row in range( 3 ):
            for col in range( 3 ):
                if current != self.cells[row][col]:
                    return False
                current += 1
        return True

    def legalMoves( self ):
        """
          Returns a list of legal moves from the current state.

        Moves consist of moving the blank space up, down, left or right.
        These are encoded as 'up', 'down', 'left' and 'right' respectively.

        >>> EightPuzzleState([0, 1, 2, 3, 4, 5, 6, 7, 8]).legalMoves()
        ['down', 'right']
        """
        moves = []
        row, col = self.blankLocation
        if(row != 0):
            moves.append('up')
        if(row != 2):
            moves.append('down')
        if(col != 0):
            moves.append('left')
        if(col != 2):
            moves.append('right')
        return moves

    def result(self, move):
        """
          Returns a new eightPuzzle with the current state and blankLocation
        updated based on the provided move.

        The move should be a string drawn from a list returned by legalMoves.
        Illegal moves will raise an exception, which may be an array bounds
        exception.

        NOTE: This function *does not* change the current object.  Instead,
        it returns a new object.
        """
        row, col = self.blankLocation
        if(move == 'up'):
            newrow = row - 1
            newcol = col
        elif(move == 'down'):
            newrow = row + 1
            newcol = col
        elif(move == 'left'):
            newrow = row
            newcol = col - 1
        elif(move == 'right'):
            newrow = row
            newcol = col + 1
        else:
            raise "Illegal Move"

        # Create a copy of the current eightPuzzle
        newPuzzle = EightPuzzleState([0, 0, 0, 0, 0, 0, 0, 0, 0])
        newPuzzle.cells = [values[:] for values in self.cells]
        # And update it to reflect the move
        newPuzzle.cells[row][col] = self.cells[newrow][newcol]
        newPuzzle.cells[newrow][newcol] = self.cells[row][col]
        newPuzzle.blankLocation = newrow, newcol

        return newPuzzle

    # Utilities for comparison and display
    def __eq__(self, other):
        """
            Overloads '==' such that two eightPuzzles with the same configuration
          are equal.

          >>> EightPuzzleState([0, 1, 2, 3, 4, 5, 6, 7, 8]) == \
              EightPuzzleState([1, 0, 2, 3, 4, 5, 6, 7, 8]).result('left')
          True
        """
        for row in range( 3 ):
            if self.cells[row] != other.cells[row]:
                return False
        return True

    def __hash__(self):
        return hash(str(self.cells))

    def __getAsciiString(self):
        """
          Returns a display string for the maze
        """
        lines = []
        horizontalLine = ('-' * (13))
        lines.append(horizontalLine)
        for row in self.cells:
            rowLine = '|'
            for col in row:
                if col == 0:
                    col = ' '
                rowLine = rowLine + ' ' + col.__str__() + ' |'
            lines.append(rowLine)
            lines.append(horizontalLine)
        return '\n'.join(lines)

    def __str__(self):
        return self.__getAsciiString()

# TODO: Implement The methods in this class

class EightPuzzleSearchProblem(search.SearchProblem):
    """
      Implementation of a SearchProblem for the  Eight Puzzle domain

      Each state is represented by an instance of an eightPuzzle.
    """
    def __init__(self,puzzle):
        "Creates a new EightPuzzleSearchProblem which stores search information."
        self.puzzle = puzzle

    def getStartState(self):
        return puzzle

    def isGoalState(self,state):
        return state.isGoal()

    def getSuccessors(self,state):
        """
          Returns list of (successor, action, stepCost) pairs where
          each succesor is either left, right, up, or down
          from the original state and the cost is 1.0 for each
        """
        succ = []
        for a in state.legalMoves():
            succ.append((state.result(a), a, 1))
        return succ

    def getCostOfActions(self, actions):
        """
         actions: A list of actions to take

        This method returns the total cost of a particular sequence of actions.  The sequence must
        be composed of legal moves
        """
        return len(actions)

EIGHT_PUZZLE_DATA = [[1, 0, 2, 3, 4, 5, 6, 7, 8],
                     [1, 7, 8, 2, 3, 4, 5, 6, 0],
                     [4, 3, 2, 7, 0, 5, 1, 6, 8],
                     [5, 1, 3, 4, 0, 2, 6, 7, 8],
                     [1, 2, 5, 7, 6, 8, 0, 4, 3],
                     [0, 3, 1, 6, 8, 2, 7, 5, 4]]

def loadEightPuzzle(puzzleNumber):
    """
      puzzleNumber: The number of the eight puzzle to load.

      Returns an eight puzzle object generated from one of the
      provided puzzles in EIGHT_PUZZLE_DATA.

      puzzleNumber can range from 0 to 5.

      >>> print loadEightPuzzle(0)
      -------------
      | 1 |   | 2 |
      -------------
      | 3 | 4 | 5 |
      -------------
      | 6 | 7 | 8 |
      -------------
    """
    return EightPuzzleState(EIGHT_PUZZLE_DATA[puzzleNumber])

def createRandomEightPuzzle(moves=100):
    """
      moves: number of random moves to apply

      Creates a random eight puzzle by applying
      a series of 'moves' random moves to a solved
      puzzle.
    """
    puzzle = EightPuzzleState([0,1,2,3,4,5,6,7,8])
    for i in range(moves):
        # Execute a random legal move
        puzzle = puzzle.result(random.sample(puzzle.legalMoves(), 1)[0])
    return puzzle

if __name__ == '__main__':
    puzzle = createRandomEightPuzzle(25)
    print('A random puzzle:')
    print(puzzle)

    problem = EightPuzzleSearchProblem(puzzle)
    path = search.breadthFirstSearch(problem)
    print('BFS found a path of %d moves: %s' % (len(path), str(path)))
    curr = puzzle
    i = 1
    for a in path:
        curr = curr.result(a)
        print('After %d move%s: %s' % (i, ("", "s")[i>1], a))
        print(curr)

        raw_input("Press return for the next state...")   # wait for key stroke
        i += 1