aboutsummaryrefslogtreecommitdiffstats
path: root/src/main.cpp
blob: 84dea3b393985eb7558ae699ecec5c1e0245a860 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
#define APP_CPU 1
#define PRO_CPU 0

#include <ArduinoOTA.h>
#include <OV2640.h>
#include <WebServer.h>
#include <WiFi.h>
#include <WiFiClient.h>

#include <driver/rtc_io.h>
#include <esp_bt.h>
#include <esp_sleep.h>
#include <esp_wifi.h>

#define PWDN_GPIO_NUM 32
#define RESET_GPIO_NUM -1
#define XCLK_GPIO_NUM 0
#define SIOD_GPIO_NUM 26
#define SIOC_GPIO_NUM 27

#define Y9_GPIO_NUM 35
#define Y8_GPIO_NUM 34
#define Y7_GPIO_NUM 39
#define Y6_GPIO_NUM 36
#define Y5_GPIO_NUM 21
#define Y4_GPIO_NUM 19
#define Y3_GPIO_NUM 18
#define Y2_GPIO_NUM 5
#define VSYNC_GPIO_NUM 25
#define HREF_GPIO_NUM 23
#define PCLK_GPIO_NUM 22

#define LED_GPIO_NUM 4

OV2640 cam;

WebServer server(80);

// ===== rtos task handles =========================
// Streaming is implemented with 3 tasks:
TaskHandle_t tMjpeg; // handles client connections to the webserver
TaskHandle_t tCam; // handles getting picture frames from the camera and storing
                   // them locally
TaskHandle_t tStream; // actually streaming frames to all connected clients
TaskHandle_t tOTA;

// frameSync semaphore is used to prevent streaming buffer as it is replaced
// with the next frame
SemaphoreHandle_t frameSync = NULL;

// Queue stores currently connected clients to whom we are streaming
QueueHandle_t streamingClients;

// We will try to achieve 25 FPS frame rate
const int FPS = 14;

// We will handle web client requests every 50 ms (20 Hz)
const int WSINTERVAL = 100;

// Commonly used variables:
volatile size_t camSize; // size of the current frame, byte
volatile char *camBuf;   // pointer to the current frame

// ==== Memory allocator that takes advantage of PSRAM if present
// =======================
char *allocateMemory(char *aPtr, size_t aSize) {

  //  Since current buffer is too smal, free it
  if (aPtr != NULL)
    free(aPtr);

  size_t freeHeap = ESP.getFreeHeap();
  char *ptr = NULL;

  // If memory requested is more than 2/3 of the currently free heap, try PSRAM
  // immediately
  if (aSize > freeHeap * 2 / 3) {
    if (psramFound() && ESP.getFreePsram() > aSize) {
      ptr = (char *)ps_malloc(aSize);
    }
  } else {
    //  Enough free heap - let's try allocating fast RAM as a buffer
    ptr = (char *)malloc(aSize);

    //  If allocation on the heap failed, let's give PSRAM one more chance:
    if (ptr == NULL && psramFound() && ESP.getFreePsram() > aSize) {
      ptr = (char *)ps_malloc(aSize);
    }
  }

  // Finally, if the memory pointer is NULL, we were not able to allocate any
  // memory, and that is a terminal condition.
  if (ptr == NULL) {
    ESP.restart();
  }
  return ptr;
}

// ==== RTOS task to grab frames from the camera =========================
void camCB(void *pvParameters) {

  TickType_t xLastWakeTime;

  //  A running interval associated with currently desired frame rate
  const TickType_t xFrequency = pdMS_TO_TICKS(1000 / FPS);

  // Mutex for the critical section of swithing the active frames around
  portMUX_TYPE xSemaphore = portMUX_INITIALIZER_UNLOCKED;

  //  Pointers to the 2 frames, their respective sizes and index of the current
  //  frame
  char *fbs[2] = {NULL, NULL};
  size_t fSize[2] = {0, 0};
  int ifb = 0;

  //=== loop() section  ===================
  xLastWakeTime = xTaskGetTickCount();

  for (;;) {
    //  Grab a frame from the camera and query its size
    cam.run();
    size_t s = cam.getSize();

    //  If frame size is more that we have previously allocated - request  125%
    //  of the current frame space
    if (s > fSize[ifb]) {
      fSize[ifb] = s * 4 / 3;
      fbs[ifb] = allocateMemory(fbs[ifb], fSize[ifb]);
    }

    //  Copy current frame into local buffer
    char *b = (char *)cam.getfb();
    memcpy(fbs[ifb], b, s);

    //  Let other tasks run and wait until the end of the current frame rate
    //  interval (if any time left)
    taskYIELD();
    vTaskDelayUntil(&xLastWakeTime, xFrequency);

    //  Only switch frames around if no frame is currently being streamed to a
    //  client Wait on a semaphore until client operation completes
    xSemaphoreTake(frameSync, portMAX_DELAY);

    //  Do not allow interrupts while switching the current frame
    portENTER_CRITICAL(&xSemaphore);
    camBuf = fbs[ifb];
    camSize = s;
    ifb++;
    ifb &= 1; // this should produce 1, 0, 1, 0, 1 ... sequence
    portEXIT_CRITICAL(&xSemaphore);

    //  Let anyone waiting for a frame know that the frame is ready
    xSemaphoreGive(frameSync);

    //  Technically only needed once: let the streaming task know that we have
    //  at least one frame and it could start sending frames to the clients, if
    //  any
    xTaskNotifyGive(tStream);

    //  Immediately let other (streaming) tasks run
    taskYIELD();

    //  If streaming task has suspended itself (no active clients to stream to)
    //  there is no need to grab frames from the camera. We can save some juice
    //  by suspedning the tasks
    if (eTaskGetState(tStream) == eSuspended) {
      vTaskSuspend(NULL); // passing NULL means "suspend yourself"
    }
  }
}

// ==== STREAMING ======================================================
const char HEADER[] = "HTTP/1.1 200 OK\r\n"
                      "Access-Control-Allow-Origin: *\r\n"
                      "Content-Type: multipart/x-mixed-replace; "
                      "boundary=123456789000000000000987654321\r\n";
const char BOUNDARY[] = "\r\n--123456789000000000000987654321\r\n";
const char CTNTTYPE[] = "Content-Type: image/jpeg\r\nContent-Length: ";
const int hdrLen = strlen(HEADER);
const int bdrLen = strlen(BOUNDARY);
const int cntLen = strlen(CTNTTYPE);

// ==== Handle connection request from clients ===============================
void handleJPGSstream(void) {
  //  Can only acommodate 10 clients. The limit is a default for WiFi
  //  connections
  if (!uxQueueSpacesAvailable(streamingClients))
    return;

  //  Create a new WiFi Client object to keep track of this one
  WiFiClient *client = new WiFiClient();
  *client = server.client();

  //  Immediately send this client a header
  client->write(HEADER, hdrLen);
  client->write(BOUNDARY, bdrLen);

  // Push the client to the streaming queue
  xQueueSend(streamingClients, (void *)&client, 0);

  // Wake up streaming tasks, if they were previously suspended:
  if (eTaskGetState(tCam) == eSuspended)
    vTaskResume(tCam);
  if (eTaskGetState(tStream) == eSuspended)
    vTaskResume(tStream);
}

// ==== Actually stream content to all connected clients
// ========================
void streamCB(void *pvParameters) {
  char buf[16];
  TickType_t xLastWakeTime;
  TickType_t xFrequency;

  //  Wait until the first frame is captured and there is something to send
  //  to clients
  ulTaskNotifyTake(pdTRUE, /* Clear the notification value before exiting. */
                   portMAX_DELAY); /* Block indefinitely. */

  xLastWakeTime = xTaskGetTickCount();
  for (;;) {
    // Default assumption we are running according to the FPS
    xFrequency = pdMS_TO_TICKS(1000 / FPS);

    //  Only bother to send anything if there is someone watching
    UBaseType_t activeClients = uxQueueMessagesWaiting(streamingClients);
    if (activeClients) {
      // Enable LED while client connected
      digitalWrite(LED_GPIO_NUM, HIGH);

      // Adjust the period to the number of connected clients
      xFrequency /= activeClients;

      //  Since we are sending the same frame to everyone,
      //  pop a client from the the front of the queue
      WiFiClient *client;
      xQueueReceive(streamingClients, (void *)&client, 0);

      //  Check if this client is still connected.

      if (!client->connected()) {
        //  delete this client reference if s/he has disconnected
        //  and don't put it back on the queue anymore. Bye!
        delete client;
      } else {

        //  Ok. This is an actively connected client.
        //  Let's grab a semaphore to prevent frame changes while we
        //  are serving this frame
        xSemaphoreTake(frameSync, portMAX_DELAY);

        client->write(CTNTTYPE, cntLen);
        sprintf(buf, "%zu\r\n\r\n", camSize);
        client->write(buf, strlen(buf));
        client->write((char *)camBuf, (size_t)camSize);
        client->write(BOUNDARY, bdrLen);

        // Since this client is still connected, push it to the end
        // of the queue for further processing
        xQueueSend(streamingClients, (void *)&client, 0);

        //  The frame has been served. Release the semaphore and let other tasks
        //  run. If there is a frame switch ready, it will happen now in between
        //  frames
        xSemaphoreGive(frameSync);
        taskYIELD();
      }
    } else {
      //  Since there are no connected clients, there is no reason to waste
      //  battery running
      digitalWrite(LED_GPIO_NUM, LOW);
      vTaskSuspend(NULL);
    }
    //  Let other tasks run after serving every client
    taskYIELD();
    vTaskDelayUntil(&xLastWakeTime, xFrequency);
  }
}

const char JHEADER[] = "HTTP/1.1 200 OK\r\n"
                       "Content-disposition: inline; filename=capture.jpg\r\n"
                       "Content-type: image/jpeg\r\n\r\n";
const int jhdLen = strlen(JHEADER);

// ==== Serve up one JPEG frame =============================================
void handleJPG(void) {
  WiFiClient client = server.client();

  if (!client.connected())
    return;

  int prev_led_state = digitalRead(LED_GPIO_NUM);
  if (prev_led_state == LOW) {
    digitalWrite(LED_GPIO_NUM, HIGH);
    // Delay capture to prevent partial illumination
    delay(300);
  }

  cam.run();
  client.write(JHEADER, jhdLen);
  client.write((char *)cam.getfb(), cam.getSize());

  if (prev_led_state == LOW) {
    digitalWrite(LED_GPIO_NUM, LOW);
  }
}

// ==== Handle invalid URL requests ============================================
void handleNotFound() {
  String message = "Server is running!\n\n";
  message += "URI: ";
  message += server.uri();
  message += "\nMethod: ";
  message += (server.method() == HTTP_GET) ? "GET" : "POST";
  message += "\nArguments: ";
  message += server.args();
  message += "\n";
  server.send(200, "text / plain", message);
}

// ======== Server Connection Handler Task ==========================
void mjpegCB(void *pvParameters) {
  TickType_t xLastWakeTime;
  const TickType_t xFrequency = pdMS_TO_TICKS(WSINTERVAL);

  // Creating frame synchronization semaphore and initializing it
  frameSync = xSemaphoreCreateBinary();
  xSemaphoreGive(frameSync);

  // Creating a queue to track all connected clients
  streamingClients = xQueueCreate(10, sizeof(WiFiClient *));

  //=== setup section  ==================

  //  Creating RTOS task for grabbing frames from the camera
  xTaskCreatePinnedToCore(camCB,    // callback
                          "cam",    // name
                          4096,     // stacj size
                          NULL,     // parameters
                          2,        // priority
                          &tCam,    // RTOS task handle
                          APP_CPU); // core

  //  Creating task to push the stream to all connected clients
  xTaskCreatePinnedToCore(streamCB, "strmCB", 4 * 1024,
                          NULL, //(void*) handler,
                          2, &tStream, APP_CPU);

  //  Registering webserver handling routines
  server.on("/mjpeg/1", HTTP_GET, handleJPGSstream);
  server.on("/jpg", HTTP_GET, handleJPG);
  server.onNotFound(handleNotFound);

  //  Starting webserver
  server.begin();

  //=== loop() section  ===================
  xLastWakeTime = xTaskGetTickCount();
  for (;;) {
    server.handleClient();

    //  After every server client handling request, we let other tasks run and
    //  then pause
    taskYIELD();
    vTaskDelayUntil(&xLastWakeTime, xFrequency);
  }
}

void ota_handle(void *optionalArgs) {
  for (;;) {
    ArduinoOTA.handle();
    delay(3500);
  }
}

// ==== SETUP method
// ==================================================================
void setup() {

  // Setup Serial connection:
  Serial.begin(115200);
  delay(1000); // wait for a second to let Serial connect

  pinMode(LED_GPIO_NUM, OUTPUT);

  // Configure the camera
  camera_config_t config;
  config.ledc_channel = LEDC_CHANNEL_0;
  config.ledc_timer = LEDC_TIMER_0;
  config.pin_d0 = Y2_GPIO_NUM;
  config.pin_d1 = Y3_GPIO_NUM;
  config.pin_d2 = Y4_GPIO_NUM;
  config.pin_d3 = Y5_GPIO_NUM;
  config.pin_d4 = Y6_GPIO_NUM;
  config.pin_d5 = Y7_GPIO_NUM;
  config.pin_d6 = Y8_GPIO_NUM;
  config.pin_d7 = Y9_GPIO_NUM;
  config.pin_xclk = XCLK_GPIO_NUM;
  config.pin_pclk = PCLK_GPIO_NUM;
  config.pin_vsync = VSYNC_GPIO_NUM;
  config.pin_href = HREF_GPIO_NUM;
  config.pin_sccb_sda = SIOD_GPIO_NUM;
  config.pin_sccb_scl = SIOC_GPIO_NUM;
  config.pin_pwdn = PWDN_GPIO_NUM;
  config.pin_reset = RESET_GPIO_NUM;
  config.xclk_freq_hz = 20000000;
  config.pixel_format = PIXFORMAT_JPEG;
  config.frame_size = FRAMESIZE_SVGA;
  config.jpeg_quality = 12;
  config.fb_count = 2;

  if (cam.init(config) != ESP_OK) {
    Serial.println("Error initializing the camera");
    delay(10000);
    ESP.restart();
  }

  //  Configure and connect to WiFi
  IPAddress ip;

  WiFi.mode(WIFI_STA);
  WiFi.begin(WIFI_SSID, WIFI_PASS);

  Serial.print("Connecting to WiFi");
  while (WiFi.status() != WL_CONNECTED) {
    delay(500);
    Serial.print(F("."));
  }
  ip = WiFi.localIP();
  Serial.println(F("WiFi connected"));
  Serial.println("");
  Serial.print("Stream Link: http://");
  Serial.print(ip);
  Serial.println("/mjpeg/1");

  ArduinoOTA
      .onStart([]() {
        String type;
        if (ArduinoOTA.getCommand() == U_FLASH)
          type = "sketch";
        else // U_SPIFFS
          type = "filesystem";

        // NOTE: if updating SPIFFS this would be the place to unmount SPIFFS
        // using SPIFFS.end()
        Serial.println("Start updating " + type);
      })
      .onEnd([]() { Serial.println("\nEnd"); })
      .onProgress([](unsigned int progress, unsigned int total) {
        Serial.printf("Progress: %u%%\r", (progress / (total / 100)));
      })
      .onError([](ota_error_t error) {
        Serial.printf("Error[%u]: ", error);
        if (error == OTA_AUTH_ERROR)
          Serial.println("Auth Failed");
        else if (error == OTA_BEGIN_ERROR)
          Serial.println("Begin Failed");
        else if (error == OTA_CONNECT_ERROR)
          Serial.println("Connect Failed");
        else if (error == OTA_RECEIVE_ERROR)
          Serial.println("Receive Failed");
        else if (error == OTA_END_ERROR)
          Serial.println("End Failed");
      });

  ArduinoOTA.begin();

  // Start Android OTA RTOS task
  xTaskCreatePinnedToCore(ota_handle, "TaskAutoConnect", 10000, NULL, 1, &tOTA,
                          PRO_CPU);

  // Start mainstreaming RTOS task
  xTaskCreatePinnedToCore(mjpegCB, "mjpeg", 4 * 1024, NULL, 2, &tMjpeg,
                          APP_CPU);
}

void loop() { vTaskDelay(1000); }